Nutrient restriction (NR) during critical windows of pregnancy has differential effects on placento-fetal growth and development. Our study, therefore, investigated developmental and metabolic adaptations within the ovine placenta following NR at different critical windows during the first 110 days of gestation (termZ147 days). Thus, the effects of NR on cell proliferation, glucocorticoid sensitivity, IGF1 and 2 receptor, peroxisome proliferator-activated receptor g (PPARG), and uncoupling protein (UCP)2 gene expression in the placenta were examined. Singleton bearing sheep (nZ4-8 per group) were fed either 100% of their total metabolizable energy requirements throughout the study or 50% of this amount between 0-30, 31-65, 66-110, and 0-110 days gestation. A significant reduction in cell proliferation and increased gene expression for the glucocorticoid and IGF2 receptors, PPARG, and UCP2 were detected in placentae sampled from mothers who were nutrient restricted between days 66 and 110 of gestation, only, relative to controls. This window of gestation coincides with the maximum placental growth and the start of exponential growth of the fetus when there are substantially increased metabolic demands on the placenta compared with earlier in gestation. Consequently, increased glucocorticoid sensitivity and suppressed IGF2 action could contribute to a switch in the placenta from proliferation to differentiation, thereby improving its nutrient transfer capacity. Upregulation of PPARG and UCP2 would promote placental fatty acid metabolism thereby limiting glucose utilization. These compensatory placental responses may serve to maintain fetal growth but could result in adverse adaptations such as the early onset of the metabolic syndrome in later life. Reproduction (2009) 138 601-608