2021 IEEE Symposium on Computers and Communications (ISCC) 2021
DOI: 10.1109/iscc53001.2021.9631460
|View full text |Cite
|
Sign up to set email alerts
|

Impact of Network Topology on the Convergence of Decentralized Federated Learning Systems

Abstract: Federated learning is a popular framework that enables harvesting edge resources' computational power to train a machine learning model distributively. However, it is not always feasible or profitable to have a centralized server that controls and synchronizes the training process. In this paper, we consider the problem of training a machine learning model over a network of nodes in a fully decentralized fashion. In particular, we look for empirical evidence on how sensitive is the training process for various… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 20 publications
0
0
0
Order By: Relevance