Faced with the biodiversity extinction crisis and climate change, alternative approaches to food production are urgently needed. Decades of chemical-based weed control have resulted in a dramatic decline in weed diversity, with negative repercussions for agroecosystem biodiversity. The simplification of cropping systems and the evolution of herbicide resistance have led to the dominance of a small number of competitive weed species, calling for a more sustainable approach that considers not only weed abundance but also community diversity and composition. Agroecological weed management involves harnessing ecological processes to minimize the negative impacts of weeds on productivity and maximize biodiversity. However, the current research effort on agroecological weed management is largely rooted in agronomy and field-scale farming practices. In contrast, the contributions of landscape-scale interventions on agroecological weed management are largely unexplored (e.g., interventions to promote pollinators and natural enemies or carbon sequestration). Here, we review current knowledge of landscape effects on weed community properties (abundance, diversity, and composition) and seed predation (a key factor in agroecological weed management). Furthermore, we discuss the ecological processes underlying landscape effects, their interaction with in-field approaches, and the implications of landscape-scale change for agroecological weed management. Notably, we found that (1) landscape context rarely affects total weed abundance; (2) configurational more than compositional heterogeneity of landscapes is associated with higher alpha, beta, and gamma weed diversity; (3) evidence for landscape effects on weed seed predation is currently limited; and (4) plant spillover from neighboring habitats is the most common interpretation of landscape effects on weed community properties, whereas many other ecological processes are overlooked. Strikingly, the drivers of weed community properties and biological regulation at the landscape scale remain poorly understood. We recommend addressing these issues to better integrate agroecological weed management into landscape-scale management, which could inform the movement towards managing farms at wider spatiotemporal scales than single fields in a single season.