Abstract. Anthropogenic emissions such as NO x and SO 2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NO x and SO 2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NO x and SO 2 concentrations (NO x : < 1to 20 ppb, SO 2 : < 0.05 to 15 ppb). In these experiments, monoterpene oxidation was dominated by OH oxidation. We found that SO 2 induced nucleation and enhanced SOA mass formation. NO x strongly suppressed not only new particle formation but also SOA mass yield. However, in the presence of SO 2 which induced a high number concentration of particles after oxidation to H 2 SO 4 , the suppression of the mass yield of SOA by NO x was completely or partly compensated for. This indicates that the suppression of SOA yield by NO x was largely due to the suppressed new particle formation, leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NO x , SO 2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NO x enhanced nitrate formation. The majority of the nitrate was organic nitrate (57-77 %), even in low-NO x conditions (< ∼ 1 ppb). Organic nitrate contributed 7-26 % of total organics assuming a molecular weight of 200 g mol −1 . SOA from α-pinene photooxidation at high NO x had a generally lower hydrogen to carbon ratio (H / C), compared to low NO x . The NO x dependence of the chemical composition can be attributed to the NO x dependence of the branching ratio of the RO 2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NO x . While NO x suppressed new particle formation and SOA mass formation, SO 2 can compensate for such effects, and the combining effect of SO 2 and NO x may have an important influence on SOA formation affected by interactions of biogenic volatile organic compounds (VOCs) with anthropogenic emissions.