2023
DOI: 10.3390/jcm12093058
|View full text |Cite
|
Sign up to set email alerts
|

Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs

Abstract: Supervised deep learning requires labelled data. On medical images, data is often labelled inconsistently (e.g., too large) with varying accuracies. We aimed to assess the impact of such label noise on dental calculus detection on bitewing radiographs. On 2584 bitewings calculus was accurately labeled using bounding boxes (BBs) and artificially increased and decreased stepwise, resulting in 30 consistently and 9 inconsistently noisy datasets. An object detection network (YOLOv5) was trained on each dataset and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
references
References 19 publications
0
0
0
Order By: Relevance