The purpose of this study was to validate a commercially available IMU system against a standard lab-based motion capture system for the measurement of shoulder elevation, elbow flexion, trunk flexion/extension and neck flexion/extension kinematics. The validation analyses were applied to six surgical faculty members performing a standard, simulated surgical training task that mimics minimally invasive surgery. Three-dimensional joint kinematics were simultaneously recorded by an optical motion capture system and an IMU system with six sensors placed on the head, chest, and bilateral upper and lower arms. The sensor-to-segment axes alignment was accomplished manually. The IMU neck and trunk IMU flexion/extension angles were accurate to within 2.9±0.9 degrees and 1.6±1.1 degrees, respectively. The IMU shoulder elevation measure was accurate to within 6.8±2.7 degrees and the elbow flexion measure was accurate to within 8.2±2.8 degrees. In the Bland-Altman analyses, there were no significant systematic errors present; however, there was a significant inversely proportional error across all joints. As the gold standard measurement increased, the IMU underestimated the magnitude of the joint angle. This study reports acceptable accuracy of a commercially available IMU system; however, results should be interpreted as protocol specific.