Crizotinib is used for the treatment of c-ros oncogene 1-positive advanced non-small-cell lung cancer. Triazole antifungal agents are widely used for invasive fungal infections in clinical practice. To predict the potential influence of different triazoles (voriconazole, fluconazole, and itraconazole) on the pharmacokinetics of crizotinib by modeling and simulation the physiologically based pharmacokinetic models were established and validated in virtual cancer subjects through Simcyp software based on the essential physicochemical properties and pharmacokinetic data collected. The validated physiologically based pharmacokinetic models were applied to predict the drug-drug interactions between crizotinib and different triazoles (voriconazole, fluconazole, or itraconazole) in patients with cancer. Crizotinib and triazole antifungal agents were administered orally. The predicted plasma concentration vs time profiles of crizotinib, voriconazole, fluconazole, and itraconazole showed good agreement with observed, respectively. The geometric mean area under the plasma concentration-time curve (AUC) of crizotinib was increased by 84%, 58%, and 79% when coadministered with voriconazole, fluconazole, or itraconazole at multiple doses, respectively. The drug-drug interaction results showed increased pharmacokinetic exposure (maximum plasma concentration and area under the plasma concentration-time curve) of crizotinib when coadministrated with different triazoles (voriconazole > itraconazole > fluconazole). Among the 3 triazoles, voriconazole exhibited the most significant influence on the pharmacokinetic exposure of crizotinib. In clinic, adverse drug reactions and toxicity related to crizotinib should be carefully monitored, and therapeutic drug monitoring for crizotinib is recommended to guide dosing and optimize treatment when coadministered with voriconazole, fluconazole, or itraconazole.