Proceedings of the 12th International Conference on Web Information Systems and Technologies 2016
DOI: 10.5220/0005861002710278
|View full text |Cite
|
Sign up to set email alerts
|

Impact of Online Product Reviews on Purchasing Decisions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

6
16
0
5

Year Published

2019
2019
2022
2022

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 41 publications
(32 citation statements)
references
References 33 publications
6
16
0
5
Order By: Relevance
“…Although implementing manual content analysis can be tedious and time consuming for the large amounts of text to be read, it proved to be successful at gaining better interpretation of Twitter content (He et al, 2017;He et al, 2013;Vidal et al, 2015). As an automatic alternative, text analysis based on machine learning algorithms have been used to extract meaningful information from the textual data, recording themes already established or commonly studied (Constantinides & Holleschovsky, 2016;Sengupta & Ghosh, 2020;van Zoonen & van der Meer, 2016). However, for the correct performance of these models, machine learning algorithms usually require a large external source of coded dataset to analyse the text units (Vidal, Ares, & Jaeger, 2018).…”
Section: Using Twitter As a Source For Gathering Consumers' Opinionmentioning
confidence: 99%
“…Although implementing manual content analysis can be tedious and time consuming for the large amounts of text to be read, it proved to be successful at gaining better interpretation of Twitter content (He et al, 2017;He et al, 2013;Vidal et al, 2015). As an automatic alternative, text analysis based on machine learning algorithms have been used to extract meaningful information from the textual data, recording themes already established or commonly studied (Constantinides & Holleschovsky, 2016;Sengupta & Ghosh, 2020;van Zoonen & van der Meer, 2016). However, for the correct performance of these models, machine learning algorithms usually require a large external source of coded dataset to analyse the text units (Vidal, Ares, & Jaeger, 2018).…”
Section: Using Twitter As a Source For Gathering Consumers' Opinionmentioning
confidence: 99%
“…Our beliefs and perceptions of reality and the choices we make are conditioned upon how others see and evaluate the world (Moro et al 2018b). For this reason, when we need to make a decision we often seek out the opinions of others (Constantinides and Holleschovsky 2016).…”
Section: Mining Online Reviewsmentioning
confidence: 99%
“…Este cenário impõe em um grande desafio para negócios, pois os usuários não apenas criam e compartilham conteúdo pessoal em seus perfis, mas também, recomendações, opiniões, reclamações e impressões sobre produto e serviço (Alt & Reinhold, 2012). eWoM é visto como um forte determinante na decisão de compra, haja vista que cerca de dois terços dos consumidores verificam as avaliações de produto, serviços e marcas antes de decidirem adquiri-los (Ahmad & Laroche, 2017;Constantinides & Holleschovsky, 2016). A análise de dados relacionados ao eWoM tem o potencial de auxiliar na tomada de decisões por gestores, gerando respostas e melhorias significativas a partir da identificação de necessidades e problemas a serem resolvidos (Gavilanes, Flatten, & Brettel, 2018;Einwiller & Steilen, 2015).…”
Section: Introductionunclassified