Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Epigenetic alterations have emerged as critical factors in the pathogenesis of brain cancer, particularly gliomas. This article explores the impact of organochlorine pesticides (OCPs) on the hypermethylation of key tumor suppressor genes, and some histone modifications in primary brain tumor (PBT) patients. Methods: This study involved 73 patients diagnosed with PBT and 15 non-cancerous brain tissue samples as contol . DNA extracted from tumor specimens was used to evaluate the methylation status of tumor suppressor genes, P16 and RRP22, using the methylation-specific PCR (MSP) technique and four histone marks (H4K16ac, H3K9ac, H4K20me3, and H3k4me2) to investigate by western blotting. Results: The results of MSP revealed the methylation of P22 and P16promoter regions and western blot analysis demonstrated significantly low levels of H3K9ac, H4K20me3, and H3K4me2 in PBT patients in comparison with the controls. The results of regression analysis revealed direct and significant correlations between serum OCPs concentration and methylation of P22 and P16. Furthermore, a direct and significant association was observed between hypomethylation of histones H3K4 and H4K20, as well as hypoacetylation of H3K9, with OCPs levels. Conclusion: This study revealed that epigenetic modifications play a significant role in the development of brain tumors, with OCPs identified as key contributors to these changes. Our research indicated that in patients with PBT, hypermethylation of the P22 and P16 gene and histone modifications correlates directly and significantly with the levels of OCPs found in their serum.
Background: Epigenetic alterations have emerged as critical factors in the pathogenesis of brain cancer, particularly gliomas. This article explores the impact of organochlorine pesticides (OCPs) on the hypermethylation of key tumor suppressor genes, and some histone modifications in primary brain tumor (PBT) patients. Methods: This study involved 73 patients diagnosed with PBT and 15 non-cancerous brain tissue samples as contol . DNA extracted from tumor specimens was used to evaluate the methylation status of tumor suppressor genes, P16 and RRP22, using the methylation-specific PCR (MSP) technique and four histone marks (H4K16ac, H3K9ac, H4K20me3, and H3k4me2) to investigate by western blotting. Results: The results of MSP revealed the methylation of P22 and P16promoter regions and western blot analysis demonstrated significantly low levels of H3K9ac, H4K20me3, and H3K4me2 in PBT patients in comparison with the controls. The results of regression analysis revealed direct and significant correlations between serum OCPs concentration and methylation of P22 and P16. Furthermore, a direct and significant association was observed between hypomethylation of histones H3K4 and H4K20, as well as hypoacetylation of H3K9, with OCPs levels. Conclusion: This study revealed that epigenetic modifications play a significant role in the development of brain tumors, with OCPs identified as key contributors to these changes. Our research indicated that in patients with PBT, hypermethylation of the P22 and P16 gene and histone modifications correlates directly and significantly with the levels of OCPs found in their serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.