Salinity significantly affects shellfish metabolism and growth. In this study, we evaluated the characterization of metabolomic differences in the juvenile black-shelled pearl oyster, Pinctada fucata martensii, under 15‰ (LSG), 25‰ (CG), and 35‰ (HSG) salinity conditions. Non-targeted metabolomics analyses revealed that salinity stress altered the metabolism of pearl oyster. A total of 229 significant differential metabolites (SDMs) were identified between LSG and CG via an in-house MS2 database, 241 SDMs were identified between LSG and HSG, and 50 SDMs were identified between CG and HSG. The pathway analysis showed that 21 metabolic pathways were found between LSG and CG, such as arginine and proline metabolism, glycerophospholipid metabolism, and pentose and glucuronide interconversion. A total of 23 metabolic pathways were obtained between LSG and HSG, such as aspartate, alanine, and glutamate metabolism. Only aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, and biotin metabolism were enriched between CG and HSG. A further integrated analysis suggested that amino acid metabolism might participate in osmoregulation and energy metabolism to respond to salinity stress in P. f. martensii, and the metabolic pathways differed under varying salinity stress conditions. In addition, low salinity stress might promote apoptosis in pearl oysters. Altogether, these results clarify the salinity tolerance mechanism of pearl oysters.