2016
DOI: 10.1007/s11704-016-5203-5
|View full text |Cite
|
Sign up to set email alerts
|

Impact of preprocessing on medical data classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
13
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 30 publications
(14 citation statements)
references
References 55 publications
0
13
0
1
Order By: Relevance
“…Tujuan dari pra-pemrosesan ini adalah untuk menentukan karakteristik data medis yang mencakup noise, data tak lengkap, dan fitur tak relevan. Metode pra-pemrosesan dilakukan dengan operasi diskretisasi atribut numerik, pemilihan atribut subset dan penanganan nilai hilang [6]. Termasuk dalam hal pra-pemrosesan data, [7] mengusulkan perbaikan algoritma kNN dengan menggunakan matrik korelasi untuk merekonstruksi titik-titik data tes untuk mendapatkan nilai k yang paling tepat mengacu kepada matrik korelasi kNN [7].…”
Section: Pendahuluanunclassified
“…Tujuan dari pra-pemrosesan ini adalah untuk menentukan karakteristik data medis yang mencakup noise, data tak lengkap, dan fitur tak relevan. Metode pra-pemrosesan dilakukan dengan operasi diskretisasi atribut numerik, pemilihan atribut subset dan penanganan nilai hilang [6]. Termasuk dalam hal pra-pemrosesan data, [7] mengusulkan perbaikan algoritma kNN dengan menggunakan matrik korelasi untuk merekonstruksi titik-titik data tes untuk mendapatkan nilai k yang paling tepat mengacu kepada matrik korelasi kNN [7].…”
Section: Pendahuluanunclassified
“…Data preprocessing tasks are necessary to transform the original raw information with incomplete, inconsistent, and noisy data into a high-quality and cleaned dataset for subsequent analysis. The classification performance can be improved mainly by selecting the right combination of preprocessing methods [62]. There is no predefined sequence of preparation steps.…”
Section: Data Preprocessingmentioning
confidence: 99%
“…Step 5: Discretization This process is performed on the numerical features to partition values into a finite number of non-overlapping intervals. Finding the optimal discretization of a feature is NP-hard [62]. There are two main techniques of discretization, namely supervised method, where the class feature is considered, and the unsupervised method, where the class feature is not considered.…”
Section: Step 3: Outlier Detection and Preventionmentioning
confidence: 99%
“…The preprocessing method includes a number of stages such as: data extraction, data cleaning, data fusion, data reduction, and feature construction [9]. The preprocessing method can be done through the process of discretization of numeric attributes, subset attribute selection, and handling missing value [10]. Studies conducted by Krawczyk modified hybrid ensemble methods and incorporated feature selection processes at the bagging stage by using a genetic algorithm, but the method they proposed failed to address the problem of data accuracy and their results showed that diversity measurements need attention [11].…”
Section: Related Workmentioning
confidence: 99%