Impact of Quantum Non-Locality and Electronic Non-Ideality on the Shannon Entropy for Atomic States in Dense Plasma
Askhat T. Nuraly,
Madina M. Seisembayeva,
Karlygash N. Dzhumagulova
et al.
Abstract:The influence of the collective and quantum effects on the Shannon information entropy for atomic states in dense nonideal plasma was investigated. The interaction potential, which takes into account the effect of quantum non-locality as well as electronic correlations, was used to solve the Schrödinger equation for the hydrogen atom. It is shown that taking into account ionic screening leads to an increase in entropy, while taking into account only electronic screening does not lead to significant changes.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.