PurposeRapid industrialization and construction generate substantial concrete waste, leading to significant environmental issues. Nearly 10 billion metric tonnes of concrete waste are produced globally per year. In addition, concrete also accelerates the consumption of natural resources, leading to the depletion of these natural resources. Therefore, this study uses artificial intelligence (AI) to examine the utilization of recycled concrete aggregate (RCA) in concrete.Design/methodology/approachAn extensive database of 583 data points are collected from the literature for predictive modeling. Four machine learning algorithms, namely artificial neural network (ANN), random forest (RF), ridge regression (RR) and least adjacent shrinkage and selection operator (LASSO) regression (LR), in predicting simultaneously concrete compressive and tensile strength were evaluated. The dataset contains 10 independent variables and two dependent variables. Statistical parameters, including coefficient of determination (R2), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE), were employed to assess the accuracy of the algorithms. In addition, K-fold cross-validation was employed to validate the obtained results, and SHapley Additive exPlanations (SHAP) analysis was applied to identify the most sensitive parameters out of the 10 input parameters.FindingsThe results indicate that the RF prediction model performance is better and more satisfactory than other algorithms. Furthermore, the ANN algorithm ranks as the second most accurate algorithm. However, RR and LR exhibit poor findings with low accuracy. K-fold cross-validation was successfully applied to validate the obtained results and SHAP analysis indicates that cement content and recycled aggregate percentages are the effective input parameter. Therefore, special attention should be given to sensitive parameters to enhance the concrete performance.Originality/valueThis study uniquely applies AI to optimize the use of RCA in concrete production. By evaluating four machine learning algorithms, ANN, RF, RR and LR on a comprehensive dataset, this study identities the most effective predictive models for concrete compressive and tensile strength. The use of SHAP analysis to determine key input parameters and K-fold cross-validation for result validation adds to the study robustness. The findings highlight the superior performance of the RF model and provide actionable insights into enhancing concrete performance with RCA, contributing to sustainable construction practice.