Clostridium tyrobutyricum, a Gram-positive, anaerobic, spore-forming bacterium, is considered as one of the main causative agents for spoilage of hard and semihard cheeses. Growth of C. tyrobutyricum in cheese is critically influenced by ripening temperature and time, pH, salt and lactic acid concentration, moisture and fat content, and the presence of other microorganisms. Previous studies revealed high intraspecies diversity of C. tyrobutyricum strains and variable tolerance toward pH, temperatures, and salt concentrations. These findings indicate that strain-dependent characteristics may be relevant to assess the risk for cheese spoilage if clostridial contamination occurs. In this study, we aimed to compare the phenotypes of 12 C. tyrobutyricum strains which were selected from 157 strains on the basis of genotypic and proteotypic variability. The phenotypic analysis comprised the assessment of gas production and organic acid concentrations in an experimental cheese broth incubated at different temperatures (37, 20, and 14 °C). For all tested strains, delayed gas production at lower incubation temperatures and a strong correlation between gas production and the change in organic acid concentrations were observed. However, considering the time until gas production was visible at different incubation temperatures, a high degree of heterogeneity was found among the tested strains. In addition, variation among replicates of the same strain and differences due to different inoculum levels became evident. This study shows, that, among other factors, strain-specific germination and growth characteristics should be considered to evaluate the risk of cheese spoilage by C. tyrobutyricum.