Permeable barriers are used for passive remediation of groundwater and can be constructed from a range of materials. The optimal material depends on the types of contaminants and physico-chemical parameters present at the site, as well as the hydraulic conductivity, environmental safety, availability, cost and long-term stability of the material itself. The aim of the presented study was to test a number of materials for their ability to remove heavy metals and organic pollutants from groundwater with a high (140 mg L(-1)) content of natural organic matter (NOM). The following materials were included in the study: sand, peat, fly ash, iron powder, lignin and combinations thereof. Polluted water was fed into glass columns loaded with each sorbent and the contaminant removal efficiency of the material was evaluated through chemical analysis of the percolate. Materials based on fly ash and zero-valent iron were found to be the most effective for heavy metal removal, while fly ash and peat were the most effective for removing aliphatic compounds. Filtration through lignin and peat led to leaching of NOM. Although the leaching decreased over time, it remained high throughout the experiments. The results indicate that remediation of contaminated land at disused industrial sites is a complex task that often requires the use of mixed materials or a minimum of two sequential barriers.