2021
DOI: 10.48550/arxiv.2102.01927
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Impact of Sound Duration and Inactive Frames on Sound Event Detection Performance

Abstract: In many methods of sound event detection (SED), a segmented time frame is regarded as one data sample to model training. The durations of sound events greatly depend on the sound event class, e.g., the sound event "fan" has a long duration, whereas the sound event "mouse clicking" is instantaneous. Thus, the difference in the duration between sound event classes results in a serious data imbalance in SED. Moreover, most sound events tend to occur occasionally; therefore, there are many more inactive time frame… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?