Surrogate species are commonly used to evaluate the ability of decontamination, sterilization, and/or disinfectant methods to sanitize bio-contaminated surfaces, equipment, facilities, soil, or water. As new decontamination technologies become commercialized there is an ongoing need to evaluate them using field studies, or on-site for large, stationary systems, to determine if they are more environmentally friendly, less expensive, or more effective than the current sanitation practices. This surrogate review compares potential surrogate species such as MS2 bacteriophage, Clostridium difficile, Bacillus subtilis, and Cytisus scoparius for their ability to accurately estimate the efficacy of decontamination, sterilization methods or commercial systems when evaluated under field conditions. Evaluation of decontamination systems, using field or on-site studies conducted under real-world conditions provides realistic estimates of sanitation and insights into potential risks to health or the environment. Multi-stage decontamination systems, or semi-sterilization methods, such as concentrated, or high-level, disinfectants, pressure washing equipment with steam, or extended ultra-violet (UV-C) radiation, require hard-to-kill surrogates, such as B. subtilis, to determine effective treatments. Use of multiple surrogates for decontamination or sterilization research alleviates several concerns about selecting a single surrogate species that may only perform well only under specific treatments or environmental conditions.