In this present study, the effect of surface waviness on the performance of journal bearing operating in misaligned conditions has been investigated. The journal’s misaligned conditions in the present analysis are taken about the circumferential, the axial, and both axes. For computing the pressure of lubricant inside the bearing, the finite element method has been applied to solve the Reynolds equation and thus static parameters are obtained. The static parameters, that is, load carrying capacity and coefficient of friction are evaluated at different waviness variables and are compared with misaligned journal bearing without surface waviness. It is observed that misalignment considered in both axes has the most severe effect on static performance parameters as compared to misalignment only in the circumferential or axial axis. With the increase in circumferential waviness number up to n = 5, the load-carrying capacity increases, and the coefficient of friction decreases under high eccentricity ratios. Change in waviness amplitude also impacts the bearing performance. Axial waviness always deteriorates the bearing performance. Combined waviness increases the load carrying capacity and decreases the coefficient of friction when circumferential waviness number n = 5 and axial waviness number m = 2. The highest performance enhancement ratio is attained at an eccentricity ratio of 0.8 with a circumferential waviness number n of 5, axial waviness number m of 2, and dimensionless waviness amplitude [Formula: see text] of 0.075.