The exploration of semiconductor nanostructures utilizing mixed metal materials is an emerging area of study across fields including field‐effect transistors, chemical sensors, photodetectors, photocatalysts, and many more. This study developed ZnFe2O4‐based Schottky diodes to tune their electronic and optoelectronic characteristics through doping. Here, Ni doping facilitated the tuning of electronic properties, leading to significant increase in the rectification ratio from 238 to 1172, along with a reduction in the potential barrier height from 0.67 V to 0.65 V. This is attributed to Ni’s role as a charge carrier in ZFO, enhancing carrier concentration, confirmed by Mott–Schottky analysis. The 5 mol% Ni‐doped ZFO also exhibited remarkable light sensitivity, with its rectification ratio surging to 1795 under illumination, four times that of the undoped version. Additionally, its photo‐sensitivity soared to 42.46%, nearly quadrupling the undoped device’s performance, and its power gain impressively climbed to 38.4%, which is over twelvefold the undoped sample’s output. Furthermore, the diode responds strongly to optical illumination, making this structure suitable for use as a photodiode or photosensor. Apart from that by employing a doping strategy, we achieved 64.61% degradation of methylene blue dye under visible light in 120 minutes, compared to 36.85% for the undoped sample.