Background Cotton is known for its fiber and it is grown in tropical and sub-tropical areas of the world. It has a significant role in GDP of Pakistan. Therefore, present two years research was conducted to estimate heritability and association among various yield contributing parameters of cotton. The selected genotypes of cotton were hybridized in green house of the department. The F 0 cotton seed along with parents were planted in the field conditions during May, 2018. The sowing of this experiment was completed in three replications followed by RCBD. The data was recorded at maturity for various agronomic traits including plant height, number of bolls per plant, number of sympodial branches per plant, seed cotton yield, boll weight, seed index, ginning out turn, fiber length, fiber strength, and fiber fineness. Level of significance of data was computed by ANOVA to assess the difference among cotton genotypes which was used for estimation of heritability and correlation analysis among the related traits. Results Association analysis revealed that seed cotton yield had significant positive relationship with plant height, number of bolls per plant, number of sympodial branches per plant, ginning out turn, staple length and fiber strength. Staple length and fiber strength were negatively linked with each other. Estimates of heritability were high for all observed traits except number of sympodial branches per plant and boll weight. Conclusion The parent IUB-222 was found best for plant height, number of bolls per plant, boll weight, ginning out turn, seed cotton yield and seed index. NIAB-414 and VH-367 were identified best parents for fiber length, strength and fineness. Among crosses NIAB-414 × IUB-222 was best for number of bolls per plant, seed index, seed cotton yield and fiber fineness. Whereas, cross NIAB-414 × CIM-632 was good for plant height. The combination of A555 × CIM-632 was best for number of sympodial branches per plant, boll weight, fiber length and strength. VH-367 × CIM-632 proved best for ginning out turn. The correlation results from this study would be helpful to breed cotton cultivars with good yield and quality characters. Broad sense heritability was high for all of parameters which provides the strong evidence that selection in early generations can improve the performance of these traits.