ABSTRACT. The composition and the seasonality of the natural populations of Drosophila species in relation to the climatic variables temperature and rainfall were analyzed from September 1998 through October 1999 by monthly collections, in two woodlands in the Northwest of the State of São Paulo, Brazil. The diversity dominance component curves were inclined, reflecting low diversity and high dominance of few species. Among the 25 species recorded, Drosophila sturtevanti Duda, 1927 was the most frequent and abundant. On the opposite to data in literature, D. paranaensis Barros, 1950 abundance and frequency were greater than those from D. mercatorum Patterson & Wheeler, 1942. A positive correlation between abundance and rainfall was observed for D. nebulosa Sturtevant, 1916. These data are indicative of changes in the populations structure due to new adaptive strategies arised in response to environmental modifications. Populations are entities in a state of change. Even when the community and the ecosystem appear not to change, the density, mortality, survival, age distribution, growth rate and other attributes of the component populations generally fluctuate, as species adjust constantly to the seasons, physical forces and to each other. Consequently, it is much more revealing to discover in what way and how quickly a given population is changing than what its size and composition may be at a certain moment (ODUM, 1988).
KEYWORDS.In the natural world, it is important to distinguish between seasonal changes in the size of a population, largely controlled by seasonal adaptations linked to environmental factors, and annual fluctuations. Annual fluctuations may be considered in two categories: those controlled principally by annual differences in extrinsic factors such as temperature and rainfall, which are beyond the sphere of population interactions, and intrinsic factors, oscillations controlled principally by population dynamics, like biotic factors, such as the availability of food or energy. In many cases, year-on-year changes in abundance appear to be clearly correlated to variation in one or more of the principle extrinsic limiting factors, but some species maintain such a regular relative abundance, apparently irrespective of obvious environmental factors, that the term "cycles" appears to be appropriate. Species that have such a regular variation in population size are often described as "cyclical". Populations modify and compensate for the perturbations of physical factors, thus, the more organized and mature the community, or the more stable the physical environment, or both, the less will be the amplitude of the fluctuations in population density over time (KREBS, 1985).According to BRNCIC et al. (1985) the seasonality of each species in the natural world is the result of a long and continuous process of adaptation to environmental conditions in which the species usually lives.Flies of the Drosophila genus are appropriate for the study of population fluctuation, as they are insects highly sensitive to ...