2022
DOI: 10.48550/arxiv.2205.02081
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Impact of the equation of state on $f$- and $p$- mode oscillations of neutron stars

Abstract: We investigate the impact of the neutron-star matter equation of state on the f -and p1-mode oscillations of neutron stars obtained within the Cowling approximation and linearized General relativity. The f -and p1-mode oscillation frequencies, and their damping times are calculated using representative sets of Skyrme Hartree-Fock and relativistic mean-field models, all of which reproduce nuclear systematics and support 2M neutron stars. Our study shows strong correlations between the frequencies of f -and p1-m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(8 citation statements)
references
References 80 publications
0
7
0
Order By: Relevance
“…[87,88]. The nonradial f -mode frequency can be determined using the Cowling approximation [89][90][91][92].…”
Section: Jcap10(2023)073mentioning
confidence: 99%
“…[87,88]. The nonradial f -mode frequency can be determined using the Cowling approximation [89][90][91][92].…”
Section: Jcap10(2023)073mentioning
confidence: 99%
“…Neutron stars (NSs) exhibit oscillations that are regarded as potential sources of GWs, manifesting in various forms including radial [8][9][10][11][12][13] and non-radial [14][15][16][17] modes. When a NS experiences external or internal disturbances, it emits GWs through different oscillation modes known as quasi-normal modes (QNMs), each characterized by the restoring force that brings them back to their equilibrium state.…”
Section: Introductionmentioning
confidence: 99%
“…When a NS experiences external or internal disturbances, it emits GWs through different oscillation modes known as quasi-normal modes (QNMs), each characterized by the restoring force that brings them back to their equilibrium state. Notable QNMs include the fundamental mode (f -mode) [18][19][20], pressure mode (p-mode) [15,21], gravity mode (g-mode) [22][23][24][25][26][27][28][29], rotational mode (r-mode) [30][31][32][33][34][35], space-time mode (w-mode) [36,37], and other modes [38][39][40][41]. The frequencies of these oscillations are directly linked to the internal structure and composition of the stars [24].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Radial oscillations involve expansions and contractions akin to a pulsating motion that helps maintain the star's spherical shape [17][18][19][20][21]. In contrast, non-radial oscillations manifest as asymmetric vibrations centered around the star's core are guided by a restoring force that brings the star back to its equilibrium state [9][10][11][22][23][24][25][26][27]. Non-radial oscillations can manifest in various modes, denoted as f , p, g, r, and w-modes, although not all of them contribute to the emission of gravitational waves.…”
Section: Introductionmentioning
confidence: 99%