Crude glycerol (CG) and glycerol pitch (GP) are highly alkaline residues from biodiesel and oleochemical plants, respectively, and have organic content which incurs high disposal cost and poses an environmental threat. Characterization of these residues for composition and properties could provide insight into their quality for proper disposal and can help the biodiesel industry to adopt more sustainable practices, such as reducing waste and improving the efficiency of the production process, hence minimizing the impact of the biodiesel supply chain to the environment. These data also allow the identification and exploration of new ways for their utilization and transformation into highly value-added products. In this study, we evaluated four CG samples (B, C, D, and E) and two GP samples (F and G) obtained from Malaysian palm oil refineries, and the results were compared with pure glycerol (A). Spectroscopic analysis was performed using FTIR,
1
H-, and
13
C-NMR. All samples had similar density to A (1.26 g/cm
3
), except for F (1.31 g/cm
3
), while the density for E and G could not be determined due to their physical states. The pH and viscosity largely varied in the range of 7.26–11.89 and 43–225 cSt, respectively. The glycerol content of CG (B, C, D, and E) was high and consistent (81.7–87.3%) whereas GP F and G had 71.5 and 63.9% glycerol content, respectively. Major contaminants in CG and GP were water and matter organic non-glycerol (MONG), respectively. The water, ash, soap, and salt content were considerably low, which varied from 3.4 to 14.1%, 3.9 to 13.0%, 0.1 to 5.7%, and 4.1 to 9.2% respectively. Thermal analysis of CG and GP exhibited four phases of decomposition attributed to the impurities compared to the single phase in A. All samples had calorific values lower than A (18.1 MJ/kg) between 9.0 and 17.7 MJ/kg. Based on the results, CG and GP have high glycerol content which reveals their potential to be used as feedstock in bioconversion and chemical or thermal treatment while impurities may be removed by pre-treatment if required. As palm oil is one of the main feedstocks for the oleochemical industry, this work underlines the importance of characterization of the residue generated to provide additional data and information on palm-based agricultural industry wastes, minimize the impact of palm oil supply chain on the environment, and explore its potential usage for value-addition.
Supplementary Information
The online version contains supplementary material available at 10.1007/s13399-023-04003-4.