2022
DOI: 10.1002/htj.22676
|View full text |Cite
|
Sign up to set email alerts
|

Impact of thermal conductivity on a horizontal absorbent isothermal wall in a porous medium with heat source and thermophoretic forces: Application of suction/blowing

Abstract: The implanted porous media plays a key role in the performance of the fluid flow. To study the novelty of porous media in a two‐dimensional fluid motion associated with thermophoretic forces, viscous dissipative heat, and variable thermal conductivity over a permeable horizontal surface, we have adopted appropriate similarity transformation to convert the prominent partial differential equations to nonlinear ordinary differential equations in nondimensional form. MATLAB Bvp4c code is employed for the conservat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 29 publications
0
6
0
Order By: Relevance
“…The governing equations for fluid motion are provided below, using the boundary‐layer assumptions and the aforementioned hypotheses 27,29,49 : u*x+v*y=0 <math altimg="urn:x-wiley:26884534:media:htj22737:htj22737-math-0007" display="block" wiley:location="equation/htj22737-math-0007.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>x</mi></mrow></mfrac><mo>\unicode{x0002B}</mo><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>y</mi></mrow></mfrac><mo>\unicode{x0003D}</mo><mn>0</mn></mrow></mrow></math> u*u*x+v*v*y=υ+k*ρ2u*y2+k*ρN*y+βgfalse(T*Tnormal∞false)υKpu*σB0ρu*2 <math altimg="urn:x-wiley:26884534:media:htj22737:htj22737-math-0008" display="block" wiley:location="equation/htj22737-math-0008.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>x</mi></mrow></mfrac><mo>\unicode{x0002B}</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>y</mi></mrow></mfrac><mo>\unicode{x0003D}</mo><mfenced close=")" open="("><mrow><mi>\unicode{x003C5}</mi>&lt...…”
Section: Mathematical Formulationmentioning
confidence: 99%
See 4 more Smart Citations
“…The governing equations for fluid motion are provided below, using the boundary‐layer assumptions and the aforementioned hypotheses 27,29,49 : u*x+v*y=0 <math altimg="urn:x-wiley:26884534:media:htj22737:htj22737-math-0007" display="block" wiley:location="equation/htj22737-math-0007.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>x</mi></mrow></mfrac><mo>\unicode{x0002B}</mo><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>y</mi></mrow></mfrac><mo>\unicode{x0003D}</mo><mn>0</mn></mrow></mrow></math> u*u*x+v*v*y=υ+k*ρ2u*y2+k*ρN*y+βgfalse(T*Tnormal∞false)υKpu*σB0ρu*2 <math altimg="urn:x-wiley:26884534:media:htj22737:htj22737-math-0008" display="block" wiley:location="equation/htj22737-math-0008.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>x</mi></mrow></mfrac><mo>\unicode{x0002B}</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup><mfrac><mrow><mo>\unicode{x02202}</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup></mrow><mrow><mo>\unicode{x02202}</mo><mi>y</mi></mrow></mfrac><mo>\unicode{x0003D}</mo><mfenced close=")" open="("><mrow><mi>\unicode{x003C5}</mi>&lt...…”
Section: Mathematical Formulationmentioning
confidence: 99%
“…The corresponding boundary conditions are 27,29,49 : falsey=0:u*=Uw=italicax,v*=V*,N*=true12trueuy,T*=Twynormal∞:u*0,v*0,N*0,T*T <math altimg="urn:x-wiley:26884534:media:htj22737:htj22737-math-0011" display="block" wiley:location="equation/htj22737-math-0011.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfenced close="}" open="{"><mstyle displaystyle="false"><mtable columnalign="left"><mtr><mtd><mi>y</mi><mo>\unicode{x0003D}</mo><mn>0</mn><mo>:</mo><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x0003D}</mo><msub><mi>U</mi><mi>w</mi></msub><mo>\unicode{x0003D}</mo><mi mathvariant="italic">ax</mi><mo>,</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x0003D}</mo><msup><mi>V</mi><mo>\unicode{x0002A}</mo></msup><mo>,</mo><msup><mi>N</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x0003D}</mo><mstyle displaystyle="true"><mfrac><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mstyle><mstyle displaystyle="true"><mfrac><mrow><mo>\unicode{x02202}</mo><mi>u</mi></mrow><mrow><mo>\unicode{x02202}</mo><mi>y</mi></mrow></mfrac></mstyle><mo>,</mo><msub><mrow><msup><mi>T</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x0003D}</mo><mi>T</mi></mrow><mi>w</mi></msub></mtd></mtr><mtr><mtd><mi>y</mi><mo>\unicode{x02192}</mo><mi mathvariant="normal">\unicode{x0221E}</mi><mo>:</mo><msup><mi>u</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x02192}</mo><mn>0</mn><mo>,</mo><msup><mi>v</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x02192}</mo><mn>0</mn><mo>,</mo><msup><mi>N</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x02192}</mo><mn>0</mn><mo>,</mo><msup><mi>T</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x02192}</mo><msub><mi>T</mi><mi mathvariant="normal">\unicode{x0221E}</mi></msub></mtd></mtr>&l...…”
Section: Mathematical Formulationmentioning
confidence: 99%
See 3 more Smart Citations