The purpose of the present study is to analyze the flow, heat and mass transfer characteristics in the three dimensional magnetohydrodynamic stretched flow of Cross nanofluids. In the present study, Brownian movement, thermophoresis, thermal and solute convective boundary conditions are considered. With boundary layer approximation and self-similarity transformations, the non dimensional nonlinear governing equations are solved via shooting iteration technique together with 4th order Runge-Kutta integration scheme. The impact of developed physical parameters on velocity, temperature, concentration, surface viscous drag, heat and mass transfer rates has been examined via appropriate graphs and discussions. The numerical results indicate that uplift in the magnetic field strength and Weissenberg number diminishes the axial and transverse velocity fields. Further, the temperature ratio parameter brings about substantial improvement to the temperature and the related layer. The outcomes of the present study provide significant contribution to the controlled fluid motion and regulating the rate of heat transportation from the solid boundary into the boundary layer.