Previous studies have indicated a potential for improving the performance of a Turbine Center Frame (TCF) duct by op- timizing the clocking position between the high-pressure-turbine (HPT) vanes and TCF struts. To assess the impact of clocking on the performance, a new test vehicle with a clockable ratio of HPT vanes to TCF struts, consisting of an HPT stage (aero- dynamically representative of the second-stage HPT engine), a TCF duct with non-turning struts, and a first-stage low-pressure turbine vane, was designed and tested in the transonic test tur- bine facility (TTTF) at Graz University of Technology. This paper quantifies the performance impact of clocking and describes the mechanisms causing TCF flow field changes, lever- aging both experimental and numerical data. Other areas in the TCF duct impacted by the choice of the HPT vane circumfer- ential position including the strength of unsteady HPT-TCF in- teraction modes, TCF strut incidence changes, and carry-over effects to the first LPT vane are additionally highlighted. Five-hole-probe (5HP) area traverses and kielhead-rake tra- verses were used to asses the flow field at the TCF-exit and calcu- late the pressure loss. The flow field at the TCF exit shows signif- icant differences depending on the circumferential position of the HPT vane. A relative performance benefit of 5% was achieved.