Despite the extensive research that has been conducted for decades on the behavior of confined liquids, detailed knowledge of this phenomenon, particularly in the mixed/boundary lubrication regime, remains limited. This can be attributed to several factors including the difficulty of direct experimental observations of the behavior of lubricant molecules under non-equilibrium conditions, the high computational cost of molecular simulations to reach steady state, and the low signal-to-noise ratio at extremely low shear rates corresponding to actual operating conditions. To this end, we studied the correlation between the structure formation and shear viscosity of octamethylcyclotetrasiloxane confined between two mica surfaces in a mixed/boundary lubrication regime. Three different surface separations corresponding to two-, three-, and five-layered structures were considered to analyze the effect of confinement. The orientational distributions with one specific peak for n = 2 and two distributions, including a parallel orientation with the surface normal for n > 2, were observed at rest. The confined liquids exhibited a distinct shear-thinning behavior independent of surface separations for a relatively low sliding velocity, V x 10 −1 m/s. However, the shear viscosities at V x 10 −1 m/s depended on the number of layered structures. Newtonian behavior was observed with a further increase in the sliding velocity. Furthermore, we found a strong correlation between the degree of molecular orientation and the shear viscosity of the confined liquids. The magnitude of the shear viscosity of the confined liquids can primarily be determined by the degree of molecular orientation, and shear-thinning originates from the vanishing of specific orientational distributions with increasing sliding velocity.