Farmland shelterbelt plays an important role in protecting farmland and ensuring stable crop yields, and it is mainly distributed in the form of bands and patches; different forms of distribution have different impacts on farmland, which is an important factor affecting crop yields. Therefore, high-precision classification of banded and patch farmland shelterbelt is a prerequisite for analyzing its impact on crop yield. In this study, we explored the effectiveness and transferability of an improved Prototypical Network model incorporating data augmentation and a convolutional block attention module for extracting banded and patch farmland shelterbelt in Northeast China, and we analyzed the potential of applying it to the production of large-scale farmland shelterbelt products. Firstly, we classified banded and patch farmland shelterbelt under different sample window sizes using the improved Prototypical Network in the source domain study area to obtain the optimal sample window size and the optimal classification model. Secondly, fine-tuning transfer learning and learning from scratch directly were used to classify the banded and patch farmland shelterbelt in the target domain study area, respectively, to evaluate the extraction model’s migratability. The results showed that classification of farmland shelterbelt using the improved Prototypical Network is very effective, with the highest extraction accuracy under the 5 × 5 sample window; the accuracies of the banded and patch farmland shelterbelt are 92.16% and 90.91%, respectively. Using the fine-tuning transfer learning method in the target domain can classify the banded and patch farmland shelterbelt with high accuracy, above 95% and 89%, respectively. The proposed approach can provide new insight into farmland shelterbelt classification and farmland shelterbelt products obtained from freely accessible Sentinel-2 multispectral images.