In this study, the development of advanced materials for the removal of oil–water pollution was explored, with a focus on environmental protection. The primary novelty of this research involved the conversion of waste Linear low-density polyethylene (LLDPE) into a sponge-like material denoted as sLLDPE. The process of converting involved thermal treatment in castor oil, resulting in the creation of a porous structure within the material. This sLLDPE material exhibited remarkable oil adsorbent properties and demonstrated enhanced performance in the removal of various organic contaminants from both aqueous and oil-based systems. Furthermore, gamma irradiation-induced crosslinking reactions were implemented within a dose range of 0 up to 90 kGy to further improve its oil removal capabilities. Comparing samples subjected to a radiation dose of 50 kGy with those receiving no irradiation (0 kGy), it was observed that the maximum adsorption capacities for various oils, including crude oil, gasoline oil, motor oil, pump oil, and waste oil, increased significantly. Specifically, the adsorption capacities increased by approximately 216.2%, 235.3%, 24.1%, 111.5%, and 18.6% for the respective oils. It rapidly separated oil–water mixtures with ~ 100% efficiency in a column system and maintained performance over 20 reuse cycles. The converted sLLDPE sponge exhibited excellent organics removal across solvents. The findings of this study not only shed light on the impact of irradiation on polymeric materials but also contribute to our understanding of their potential applications in environmental cleanup processes.