Shock-metamorphosed zircon in terrestrial impact cratersAbstract-To ascertain the progressive stages of shock metamorphism of zircon, samples from three well-studied impact craters were analyzed by optical microscopy, scanning electron microscopy (SEM), and Raman spectroscopy in thin section and grain separates. These samples are comprised of well-preserved, rapidly quenched impactites from the Ries crater, Germany, strongly annealed impactites from the Popigai crater, Siberia, and altered, variably quenched impactites from the Chicxulub crater, Mexico. The natural samples were compared with samples of experimentally shock-metamorphosed zircon. Below 20 GPa, zircon exhibits no distinct shock features. Above 20 GPa, optically resolvable planar microstructures occur together with the high-pressure polymorph reidite, which was only retained in the Ries samples. Decomposition of zircon to ZrO 2 only occurs in shock stage IV melt fragments that were rapidly quenched. This is not only a result of post-shock temperatures in excess of ∼1700 °C but could also be shock pressure-induced, which is indicated by possible relics of a high-pressure polymorph of ZrO 2 . However, ZrO 2 was found to revert to zircon with a granular texture during devitrification of impact melts. Other granular textures represent recrystallized amorphous ZrSiO 4 and reidite that reverted to zircon. This requires annealing temperatures >1100 °C. A systematic study of zircons from a continuous impactite sequence of the Chicxulub impact structure yields implications for the post-shock temperature history of suevite-like rocks until cooling below ∼600 °C.