In accord with the standard Earth accretion scenario, the late accretion supervened the last collision with a massive proto-planet, segregation of the core, and (partial) solidification of the magma ocean. These processes took place ≈ 40 Ma after Sun formation or somewhat later. Traces of the processes and respective materials have been preserved as specific elemental and isotopic abundances in the earth's mantle. Pu-238 U-129 I-Xe systematics trace the accreting materials and the rate of mantle mixing and degassing. Recently proposed interpretations of this last systematics appear to be precarious and are particularly discussed in this contribution. During the late accretion a terrestrial regolith, including chondritic and solar-wind-irradiated materials, was rapidly accumulating on the surface of the early thick basaltic crust, enriched in incompatible elements. This early crust had not been preserved. Its overturn(s) into the mantle during several 100th Ma after Sun formation and (partial) isolation from the mantle convection allow all principal observations, related to the informative systematics mentioned above, to be satisfied, providing the transfer of the crust®olith "cake" was not accompanying by fractionation and degassing, in contrast to present-day slab subduction.