The determination of the collection efficiency (CE) of particles during transport, vaporization, and ionization in the aerosol mass spectrometer (AMS), which uses vaporizer to evaporate non-refractory particles with subsequent ionization, is important for accurately quantifying the concentrations of chemical constituents. Particle bounce in the vaporizer can be considered as one of the most important parameters influencing the CE of particles. Substrates with various shapes (flat, cylindrical, reverse-conical, cup, trapezoidal, and reverse-T), materials (stainless steel, copper, tungsten, and molybdenum), pores with average sizes of 0.2, 1, 5, 20, and 100 mm, and mesh with a size of 79 mm, which can be a possible candidate for the vaporizer in the AMS, were constructed. Bounce fractions of sub-micrometer particles (polystyrene latex, oleic acid, and dioctyl phthalate) were determined using the differential mobility analyzer (DMA)-impactor technique under a constant impact velocity. For the porous substrate, the particle bounce fraction significantly decreased with increasing pore size and porosity, but there was an upper limit for the pore size above which the particle bounce fraction no longer decreased significantly (i.e., the rebounded particles successfully escaped from the pores). The mesh substrate also had a lower particle bounce fraction than the flat substrate. Among the tested materials, the copper substrate having the lowest hardness and elasticity had the lowest particle bounce fraction. In addition, the reverse-T shape substrate having more available surfaces for particle entrapment led to the reduction of particle bounce fraction. In terms of phase, the liquid particles had lower particle bounce fractions than the solid particles. Our results suggest that the vaporizer in the AMS should provide traps for multiple collisions of the rebounding particles with an appropriate porosity or mesh and should be made of lowhardness materials to minimize particle bounce.