Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Plant invasions drive biodiversity loss, transform ecosystems, and promote positive‐feedback cycles between invasion and fire. However, the long‐term impacts of invasive grasses across landscapes with diverse plant communities and interactions with fire are poorly known. Our objectives were to examine whether buffel grass (Cenchrus ciliaris), a globally significant plant invader, altered the abundance of understory and overstory plants, homogenized plant composition, and shifted ecosystems from woodlands to grassland and to explore interrelationships between invasion and fire. We combined two methodological approaches to assess invasion spread and impacts of buffel grass in the Aṉangu Pitjantjatjara Yankunytjatjara (APY) Lands of arid central Australia: a before‐after‐control‐impact (BACI) experiment over 25 years at 15 sites and a paired‐plot (randomized‐block) experiment at 18 sites. Both experiments spanned two geographic regions and multiple vegetation communities situated on flat plains and rocky hills. We used generalized linear mixed models to analyze predictions about plant abundance and permutational multivariate ANOVA (PERMANOVA) and permutational multivariate analysis of dispersion (PERMDISP) to examine changes in community composition. Fire and invasion interactions were explored using fire history or the relative fire tolerance of plant species as covariates, predictors, or responses. Fire interacted with the invasion process in multiple ways. Invaded sites had burnt more frequently and recently than native sites in one region, and where propagules were present in 1995, buffel grass abundance increased most when fires ensued. Abundance of understory plant functional groups (native grasses, ferns, and vines) decreased with invasion, and understory shrubs decreased due to frequent fires in invaded sites. Overstory composition shifted from fire‐sensitive species toward fire‐tolerant species, but this was not directly attributable to invasion. Partial evidence for ecosystem regime shifts included homogenization of understory communities in invaded rocky hills, and an increase in woody shrub cover at native but not invaded sites over 25 years, resulting in a 5% cover difference by 2019. Impacts were detected across heterogeneous ecological communities at a scale not previously tested amongst high background community variability. Although invasion is not dependent on fire, the acceleration of invasion spread and impacts with fire is a critical consideration for future research and management of grass invaders.
Plant invasions drive biodiversity loss, transform ecosystems, and promote positive‐feedback cycles between invasion and fire. However, the long‐term impacts of invasive grasses across landscapes with diverse plant communities and interactions with fire are poorly known. Our objectives were to examine whether buffel grass (Cenchrus ciliaris), a globally significant plant invader, altered the abundance of understory and overstory plants, homogenized plant composition, and shifted ecosystems from woodlands to grassland and to explore interrelationships between invasion and fire. We combined two methodological approaches to assess invasion spread and impacts of buffel grass in the Aṉangu Pitjantjatjara Yankunytjatjara (APY) Lands of arid central Australia: a before‐after‐control‐impact (BACI) experiment over 25 years at 15 sites and a paired‐plot (randomized‐block) experiment at 18 sites. Both experiments spanned two geographic regions and multiple vegetation communities situated on flat plains and rocky hills. We used generalized linear mixed models to analyze predictions about plant abundance and permutational multivariate ANOVA (PERMANOVA) and permutational multivariate analysis of dispersion (PERMDISP) to examine changes in community composition. Fire and invasion interactions were explored using fire history or the relative fire tolerance of plant species as covariates, predictors, or responses. Fire interacted with the invasion process in multiple ways. Invaded sites had burnt more frequently and recently than native sites in one region, and where propagules were present in 1995, buffel grass abundance increased most when fires ensued. Abundance of understory plant functional groups (native grasses, ferns, and vines) decreased with invasion, and understory shrubs decreased due to frequent fires in invaded sites. Overstory composition shifted from fire‐sensitive species toward fire‐tolerant species, but this was not directly attributable to invasion. Partial evidence for ecosystem regime shifts included homogenization of understory communities in invaded rocky hills, and an increase in woody shrub cover at native but not invaded sites over 25 years, resulting in a 5% cover difference by 2019. Impacts were detected across heterogeneous ecological communities at a scale not previously tested amongst high background community variability. Although invasion is not dependent on fire, the acceleration of invasion spread and impacts with fire is a critical consideration for future research and management of grass invaders.
Context Ecological surveillance monitoring typically targets multiple taxonomic groups by using standardised sampling across large spatial scales. Although surveillance monitoring confers advantages over hypothesis-driven monitoring in its broad taxonomic and spatial scope, the approach has been criticised for its disconnect from ecological management and failure to provide insights on the drivers of ecological change Aims To assess the adequacy of a plot-based general fauna-monitoring program for sampling reptiles as indicators of ecosystem health in a semi-arid upland region of the Northern Territory, Australia. Methods We surveyed reptiles at 90 sites, stratified between major landform and vegetation types, and using standard fauna-sampling methods, across the 2568 km2 Tjoritja National Park in the MacDonnell Ranges. We compiled a full inventory of the reptile fauna of the study area and identified species with potential utility as ecological indicators. We then used single-season occupancy models and power analyses to evaluate the adequacy of sampling for detecting potential future changes in occupancy. Key results We detected 57 of the 68 reptile species known from the protected area, 17 of which are potentially useful indicators of ecological health, mostly related to fire management. There was insufficient power to detect moderate (50%) future changes in reptile occupancy for all but the single most detected species. For the two ecological indicator species with sufficient detections for occupancy modelling, a positive association with a keystone structure (dense spinifex grass) was confirmed. However, increasing detection probability or the number of surveys would result in only minor improvements in power to detect occupancy change in these species. Conclusions Although reptiles are potentially useful indicators of ecological health, particularly in relation to fire regimes, the number of sites required to detect future changes in reptile occupancy by using standardised plot-based monitoring in this protected area is prohibitively high. Implications Our results suggest that once ecological associations are understood, monitoring ecological health remotely by using techniques such as fire-scar mapping to track proportions of long-unburnt vegetation should be considered over labour-intensive surveillance monitoring for reptiles. Targeted monitoring of threatened and other reptile species of conservation or cultural concern may also be warranted.
SummaryPartnerships between Indigenous People and governments for joint management of ancestral lands, designated as protected conservation areas for biodiversity and cultural heritage, provide an opportunity to leverage accumulated traditional land management knowledge with emerging science. In Australia, veteran or large old trees in natural landscapes are of significant ecological importance, and among the Indigenous communities, they are living monuments to historical cultural practices, but their survival, endurance and long lives are rarely acknowledged to afford them protection. In sub‐tropical Australia, the lack of consistent annual growth rings in stem wood makes it difficult to estimate the age of large trees using methods such as the periodic diameter increment. Ngugi et al., 2020 published radiocarbon (14C) dates using wood core (‘pith‐wood’) samples from 12 Indigenous culturally‐significant trees covering five species on Minjerribah (North Stradbroke Island). Due to the imprecise calendar age results of the single samples used in the original study (Ngugi et al., 2020), subsequent radiocarbon dating of an additional three wood core samples from each tree was undertaken to age the trees more precisely. The revised tree ages ranged from 63 to 531 years and suggest an important role of past Indigenous land management practices into protecting Bugari (Cypress Pine, Callitris columellaris F. Muell.) from deadly crown scorching fires. These results underscore the importance of incorporating Indigenous practices in current fire management strategies and plans. Estimating tree ages based on the periodic diameter increment method overestimated the age relative to that derived from radiocarbon dating. New bias correction factors were developed for adjusting the recorded periodic tree diameter increments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.