Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, it is important to evaluate the potential effects of this rising in coastal areas, since the saline intrusion on rivers would be intensified, leading to problems related to water quality. In this context, the present work aimed to verify saline intrusion changes along an important river, São Francisco Canal, located in Rio de Janeiro State, Brazil. For this purpose, a hydrodynamic modeling was performed using SisBaHiA, considering different sea levels and tide conditions. According to the results, it was verified the intensification on saline intrusion and higher salinity values due to a sea level rise of 0.5 m. These results show that new licenses for water withdrawals must be carefully analyzed as the fluvial flow plays an important role to contain the saltwater intrusion on the studied river. Accordingly, it is recommended the evaluation of climate change effects in order to choose best strategies to reduce coastal vulnerability, and the use of this theme on environmental licensing and territorial planning, integrating water planning with coastal management.