Neonates infected with herpes simplex virus (HSV) at the time of birth can have different courses of clinical disease. Approximately half of those infected display manifestations limited to the skin, eyes, or mouth (SEM disease, 45%). However, others develop invasive infections that spread systemically (disseminated, 25%) or to the central nervous system (CNS, 30%); both of which are associated with significant morbidity and mortality. The viral and/or host factors that predispose a neonate to these invasive forms of HSV infection are not known. To define the level of viral diversity within the neonatal population we evaluated ten HSV-2 isolates cultured from neonates with a range of clinical presentations. To assess viral fitness independent of host immune factors, we measured viral growth characteristics of each isolate in cultured cells. We found that HSV-2 isolates displayed diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger average plaque size and enhanced spread through culture, with isolates derived directly from the cerebrospinal fluid (CSF) exhibiting the most robust growth characteristics. We then sequenced the complete viral genomes of all ten neonatal HSV-2 isolates, providing the first insights into HSV genomic diversity in this clinical setting.We found extensive inter-host variation between isolates distributed throughout the HSV-2