We present in this article an analysis of the impacts of the exhaust gas recirculation (EGR) and alternative fuels on HCCI combustion mode. The objective is to reduce the pollutant emissions below the levels of established pollution standards. The ANSYS CHEMKIN-Pro software and the combined chemical kinetics mechanism were used to perform simulations for a closed homogeneous reactor under conditions relevant to HCCI engines. The calculation process is based on one single-zone in the combustion chamber. Numerical simulation has proven the ability of the models adopted, which use the essential mechanisms of the fuel combustion process, to reproduce, among other things, the evolution of the formation of chemical species. This study showed that adding hydrogen (H2) to methane (CH4) is an interesting alternative fuel because it reduces ignition time. It was concluded that an increase of EGR rate conducts to a slower combustion process, lower temperatures, and the reduction of nitrogen oxide (NOX) emissions.