A functional immune system is considered vital for the host's continued survival against the daily onslaught of foreign organisms and pathogens. In humans, as well as in many other species, it is becoming recognized that the immune system declines with age, a term known as immunosenescence, which leads to a higher incidence of infections, neoplasia and autoimmune diseases. The impact of age-related changes in the immune system was clearly not an issue when the average human life span was approximately 40 years. However, over the past 150 years, advances in medical sciences and nutrition have resulted in a dramatic increase in life expectancy to an unprecedented 80 years. Currently, in the UK more than 18% of the population are 65 years or older, and this percentage is expected to rise to 25% by 2031; a trend predicted worldwide.2 Thus, in the absence of any major evolutionary pressure, an immune system that was designed to function for approximately 40 years now has to continue for an additional four decades. Therefore, it is unsurprising that the increased susceptibility to cancers and infections seen in older persons points to severe deficiencies in the immune system.
The activity of haematopoietic stem cells in the agedA detailed overview addressing the impact of ageing on haematopoietic stem cell (HSC) function is beyond the scope of this article and more comprehensive reviews can be found elsewhere.3,4 Here we will discuss the more salient points and highlight recent findings. HSC possess the ability to differentiate into different blood-borne cells (Fig. 1), coupled with the capacity of self-renewal to prevent clonal exhaustion. Considering that all haematopoietic cells are derived from HSC, the age-dependent decline in immunity could be attributed to the functional activity of HSC in the aged. Earlier studies addressing the effect of ageing on HSC function were inconclusive. This
SummaryIt is now becoming apparent that the immune system undergoes age-associated alterations, which accumulate to produce a progressive deterioration in the ability to respond to infections and to develop immunity after vaccination, both of which are associated with a higher mortality rate in the elderly. Immunosenescence, defined as the changes in the immune system associated with age, has been gathering interest in the scientific and health-care sectors alike. The rise in its recognition is both pertinent and timely given the increasing average age and the corresponding failure to increase healthy life expectancy. This review attempts to highlight the age-dependent defects in the innate and adaptive immune systems. While discussing the mechanisms that contribute to immunosenescence, with emphasis on the extrinsic factors, particular attention will be focused on thymic involution. Finally, we illuminate potential therapies that could be employed to help us live a longer, fuller and healthier life.