SUMMARYIt was hypothesised that chronic hypoxia acclimation (preconditioning) would alter the behavioural low-O 2 avoidance strategy of fish as a result of both aerobic and anaerobic physiological adaptations. Avoidance and physiological responses of juvenile snapper (Pagrus auratus) were therefore investigated following a 6week period of moderate hypoxia exposure (10.2-12.1kPa P O2 , 21±1°C) and compared with those of normoxic controls (P O2 =20-21kPa, 21±1°C). The critical oxygen pressure (P crit ) limit of both groups was unchanged at ~7kPa, as were standard, routine and maximum metabolic rates. However, hypoxia-acclimated fish showed increased tolerances to hypoxia in behavioural choice chambers by avoiding lower P O2 levels (3.3±0.7 vs 5.3±1.1kPa) without displaying greater perturbations of lactate or glucose. This behavioural change was associated with unexpected physiological adjustments. For example, a decrease in blood O 2 carrying capacity was observed after hypoxia acclimation. Also unexpected was an increase in whole-blood P 50 following acclimation to low O 2 , perhaps facilitating Hb-O 2 off-loading to tissues. In addition, cardiac mitochondria measured in situ using permeabilised fibres showed improved O 2 uptake efficiencies. The proportion of the anaerobic enzyme lactate dehydrogenase, at least relative to the aerobic marker enzyme citrate synthase, also increased in heart and skeletal red muscle, indicating enhanced anaerobic potential, or in situ lactate metabolism, in these tissues. Overall, these data suggest that a prioritization of O 2 delivery and O 2 utilisation over O 2 uptake during long-term hypoxia may convey a significant survival benefit to snapper in terms of behavioural low-O 2 tolerance.