Background
T follicular helper (Tfh) cells underpin T-cell dependent humoral immunity and the success of most vaccines. Tfh cells also contribute to human immune disorders such as autoimmunity, immunodeficiency and malignancy. Understanding the molecular requirements for the generation and function of Tfh cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunological abnormalities.
Objective
To determine the signaling pathways and cellular interactions required for the development and function of Tfh cells in humans.
Methods
Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating Tfh (cTfh) cell subsets, memory B cells and serum Ig levels were quantified and functionally assessed in healthy controls as well as patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS or BTK.
Results
Loss-of function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS or BTK reduced cTfh frequencies. STAT3, IL21/R LOF and STAT1 gain-of function mutations skewed cTfh differentiation towards a phenotype characterized by over-expression of IFNγ and programmed death -1 (PD-1). IFNγ inhibited cTfh function in vitro and in vivo, corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1 and IL12RB1 LOF mutations.
Conclusion
Specific mutations impact the quantity and quality of cTfh cells, highlighting the need to assess Tfh cells in patients by multiple criteria, including phenotype and function. Furthermore, IFNγ functions in vivo to restrain Tfh-induced B cell differentiation. These findings shed new light on Tfh biology and the integrated signaling pathways required for their generation, maintenance and effector function, and explain compromised humoral immunity in some PIDs.