2019
DOI: 10.2139/ssrn.3391378
|View full text |Cite
|
Sign up to set email alerts
|

Impaired Interactions Among White-Matter Functional Networks in Antipsychotic-Naive First-Episode Schizophrenia

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
2
0
1

Year Published

2020
2020
2021
2021

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 0 publications
1
2
0
1
Order By: Relevance
“…Consequently, we postulate that the EC may have direct functional links with the GM regions listed above and could be an important neural substrate for MDD. Our findings are similar to earlier studies, 18,19 which provided the evidence that signals in WM correlated with signals from functional GM networks. Meanwhile, we observed negative correlations between WM‐GM connectivity and depressive symptoms, which suggested that the more severe the depression, the lower the connectivity is.…”
Section: Discussionsupporting
confidence: 93%
See 1 more Smart Citation
“…Consequently, we postulate that the EC may have direct functional links with the GM regions listed above and could be an important neural substrate for MDD. Our findings are similar to earlier studies, 18,19 which provided the evidence that signals in WM correlated with signals from functional GM networks. Meanwhile, we observed negative correlations between WM‐GM connectivity and depressive symptoms, which suggested that the more severe the depression, the lower the connectivity is.…”
Section: Discussionsupporting
confidence: 93%
“…A growing number of reports have provided convincing evidence that BOLD signals in WM encode neural activities as well as GM activities and are robustly measureable with conventional fMRI, under both functional loading and resting conditions 14‐16 . As such, resting‐state fMRI has been employed to explore FC in WM 17 or between WM and GM 18 and the manner in which it was modulated by the underpinnings of a psychiatric disorder 19 …”
Section: Discussionmentioning
confidence: 99%
“…Resting‐state functional images were preprocessed as previously described (Yeo et al, 2011 ) . Briefly, the first four volumes were discarded; slice‐time and head motion (cut‐off <2 mm) were corrected with the FSL package; global mean signal intensity was normalized; a 0.01–0.08 Hz band‐pass temporal filter was applied; and head motion, ventricular, white matter, and cerebrospinal fluid signals were regressed out along with whole brain signal to improve the correction of motion‐related artifacts (Fan et al, 2019; Han et al, 2019; Yan et al, 2013). The mean FD was calculated for each participant.…”
Section: Methodsmentioning
confidence: 99%
“…(superficial perception-motor white-matter networks)ALFF 降低而功能连接增强 [1] 。Fan 等人 利用格兰杰因果分析发现,精神分裂症患者的上放射冠网络到表层眶额网络和深层网络的信 息输入发生紊乱,且对表层网络(如额顶、额颞网络等)的抑制作用被破坏 [42] 。Jiang 等人指 出,罗兰迪克区(rolandic area)功能连接的增强以及额叶区功能连接的减弱可能是导致癫痫 患者认知功能障碍的原因 [39] 。值得注意的是,他们还发现上述功能连接的改变表现出频率特 异性,主要集中于 0.027~0.198Hz 频段,表明额叶白质以及罗兰迪克区在该频段的 BOLD 信 号和癫痫疾病存在紧密的联系。Zhao 等人发现重度抑郁症患者白质网络之间的功能连接相比 健康对照组普遍减弱 [41] 。此外,研究也发现精神分裂症患者白质网络的局部效率、聚类系数 和小世界属性等拓扑学属性均遭到破坏;胼胝体、放射冠和视辐射等白质结构的节点度和节 点效率(nodal degree and nodal efficiency)也较正常人降低 [43] 。Ji 等人发现,相比灰质网络, 正常人和帕金森症患者的白质功能网络都表现出更弱的小世界属性,意味着白质网络的随机 化转变,其更偏向于全局整合 [40] 。此外,大部分神经精神类疾病(包括:精神分裂症、抑郁 症、阿尔兹海默症、多发性硬化症等)患者静息态下全脑白质-灰质的功能连接均普遍降低 [36,41,[44][45][46] 。 此外,研究者们在部分临床研究中观察到,白质功能性的现象学变化往往也与疾病的临 床症状和个体认知功能等表现密切相关。例如 Zhao 等人发现重度抑郁症患者感觉运动网络的 BOLD 信号与病程 呈负 相关 [41] 。此外,重 度抑郁症 患者也有 多处白质 -灰质功能连接与 Hamilton 抑郁量表呈负相关,包括扣带-梭状回、外囊-梭状回、内囊前肢-听觉皮层等 [45] 。精 神分裂症患者的白质网络的拓扑学属性破坏与患者的阴性症状呈负相关 [43] 。多发性硬化症患 者双侧穹隆与灰质的功能连接变化与病灶体积呈负相关,全脑白质-灰质功能连接与病变率呈 负相关 [46] 。此外,一些研究显示,健康被试白质网络的小世界属性与个体的智力呈正相关, 而与年龄呈负相关 [47,48] (inferior corticospinal network)等白质网络与胼胝体之间结构连接与功能连接的重合度较低 [32] 。此外,相比于 DTI,fMRI 能够检测不同任务刺激下白质内功能的动态变化以及任务特异 性 [21,[25][26][27]29] [18] 。但由于技术限制,磁共振机器的场强有一定的上限,并且高场 机器造价十分昂贵,不利于研究的普及。因此还需要寻求其他方法来提高对白质信号的探测 能力,例如优化 MRI 的扫描参数 [19] 。其次,白质的 HRF 与灰质有着些许差别,甚至位于不同 深度的白质的 HRF 之间也存在差异 [22] 。若采用传统的灰质 HRF 对白质信号进行反卷积,可 能会产生假阴性的结果 [23,24] 。因此,未来的研究需要对白质的 HRF 特征进行更深入的探究。 最后,目前大多数白质功能性研究仍采用低频段 0.01~0.1Hz 滤波,但白质在较高频段 (0.073~0.25Hz)也有着较强的信号功率 [49] 。此外,Jiang 等人对白质信号的分频段研究显示, 在较高频段中能 够发现更多与疾病相关的改变 [39] 。具体 来说,他们在 高频 段( 0.027~…”
Section: 低;该通路以及对侧丘脑-背外侧前额叶通路的功能相关张量(Functional Correlation Tensors)unclassified