TGF- can signal by means of Smad transcription factors, which are quintessential tumor suppressors that inhibit cell proliferation, and by means of Smad-independent mechanisms, which have been implicated in tumor progression. Although Smad mutations disable this tumor-suppressive pathway in certain cancers, breast cancer cells frequently evade the cytostatic action of TGF- while retaining Smad function. Through immunohistochemical analysis of human breast cancer bone metastases and functional imaging of the Smad pathway in a mouse xenograft model, we provide evidence for active Smad signaling in human and mouse bonemetastatic lesions. Genetic depletion experiments further demonstrate that Smad4 contributes to the formation of osteolytic bone metastases and is essential for the induction of IL-11, a gene implicated in bone metastasis in this mouse model system. Activator protein-1 is a key participant in Smad-dependent transcriptional activation of IL-11 and its overexpression in bone-metastatic cells. Our findings provide functional evidence for a switch of the Smad pathway, from tumor-suppressor to prometastatic, in the development of breast cancer bone metastasis.IL-11 ͉ Smad4 ͉ TGF- T GF- plays a crucial role as a growth-inhibitory cytokine in many tissues (1, 2). The cytostatic effect of TGF- is mediated by a serine͞threonine kinase receptor complex that phosphorylates Smad2 and Smad3, which then translocate into the nucleus and bind Smad4 to generate transcriptional regulatory complexes (3). SMAD4 (also known as Deleted in Pancreatic Carcinoma locus 4 or DPC4) and, to a lesser extent, SMAD2 suffer mutational inactivation in a proportion of pancreatic and colon cancers (1, 2). However, tumor cells that evade this antiproliferative control by other mechanisms may display an altered sensitivity to TGF- and undergo tumorigenic progression in response to this cytokine (1, 2). Patients whose pancreatic or colon tumors express TGF- receptors fare less well than those with low or absent TGF- receptor expression in the tumor (4). In mouse models of breast cancer, TGF- signaling promotes lung (5, 6) and bone metastasis (7). In the case of osteolytic bone metastasis by breast cancer cells, it has been proposed that TGF- released from the decaying bone matrix stimulates neighboring tumor cells, establishing a vicious cycle that exacerbates the growth of the metastatic lesion (8).The TGF- signaling mechanisms that foster metastasis in human cancer are an important open question and a subject of debate. Because Smad factors are quintessential tumor suppressors, the basis for the protumorigenic effects of TGF- has been sought in the Smad-independent signaling pathways that may be triggered by TGF-. Results obtained by means of overexpression of dominant negative mutant components of the Rho pathway (9, 10) or pharmacologic inhibitors of p38 mitogen-activated protein kinase (11, 12) have implicated these pathways in the proinvasive and metastatic effects of TGF- in transformed cells. In contrast, results obta...