Carboxylesterases are a multi-gene family of enzymes widely distributed throughout the body of mammals that catalyze the hydrolysis of esters, amides, thioesters, and carbamates. In humans, two carboxylesterases, hCE1 and hCE2, are important pathways of drug metabolism. Both are expressed in the liver, but levels of hCE1 greatly exceed those of hCE2. In the intestine only high levels of hCE2 are expressed. The most common drug substrates are ester prodrugs specifically designed to enhance oral bioavailability that must be hydrolyzed to their active carboxylic acid by hydrolysis after absorption from the gastrointestinal tract. However, carboxylesterases also play an important role in the hydrolysis of some drugs to inactive metabolites. It has been widely accepted that drugs undergoing hydrolysis by hCE1 and hCE2 are not subject to clinically significant alterations in their disposition, but there is now a significant and growing body of evidence that genetic polymorphisms, drug-drug interactions, drug-disease interactions and other factors are important determinants of the variability in the therapeutic response to carboxylesterase-substrate drugs. The implications for the safe and effective use of drug therapy is far-reaching, as the patient exposure to substrate drugs includes numerous agents from widely prescribed therapeutic classes such as angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, antiplatelets, HMG-CoA inhibitors, antivirals, and central nervous system agents.