A subanesthetic dose of ketamine causes acute psychotomimetic symptoms and then more sustained antidepressant effects. A key targeted brain region is the prefrontal cortex, and the prevailing disinhibition hypothesis posits that N-methyl-d-aspartate receptor (NMDAR) antagonists such as ketamine may act preferentially on GABAergic neurons. However, cortical GABAergic neurons are heterogeneous. In particular, somatostatin-expressing (SST) interneurons selectively inhibit dendrites and regulate synaptic inputs, yet their response to systemic NMDAR antagonism is unknown. Here, we report that administration of ketamine acutely suppresses the activity of SST interneurons in the medial prefrontal cortex of the awake mouse. The deficient dendritic inhibition leads to greater synaptically evoked calcium transients in the apical dendritic spines of pyramidal neurons. By manipulating NMDAR signaling via GluN2B knockdown, we show that ketamine's actions on the dendritic inhibitory mechanism has ramifications for frontal cortex-dependent behaviors and cortico-cortical connectivity. Collectively, these results demonstrate dendritic disinhibition and elevated calcium levels in dendritic spines as important local-circuit alterations driven by the administration of subanesthetic ketamine. disinhibition and calcium elevations in dendritic spines are important components of ketamine's actions on the prefrontal cortex.
Results
Subanesthetic ketamine modifies prefrontal cortical activity in a cell-type-specific mannerWe performed two-photon microscopy on awake, head-fixed mice (Fig. 1a), targeting the Cg1/M2 sub-regions of the medial prefrontal cortex (Fig. 1b). Initially, while mice were headfixed under the two-photon microscope, we recorded body motion using an infrared camera. This was because systemic administration of subanesthetic ketamine induces hyperlocomotion in rodents 15 , and we wanted to avoid movement as a confound in our imaging experiments. We observed that ketamine (10 mg/kg, s.c.) increased body motion but only transiently, and therefore limited all of our data collection to 30 -60 minutes post-injection (Fig. 1c, d). For calcium imaging, we used AAV1-CamKII-GCaMP6f-WPRE-SV40 to express the calcium-sensitive fluorescent protein GCaMP6f in pyramidal neurons in Cg1/M2, and imaged spontaneous fluorescence transients from the awake mouse (Fig. 1e). From the fluorescence transients, we detected calcium events using a peeling method based on template matching 16 . Ketamine (10 mg/kg, s.c.) increased the rate of spontaneous calcium events in pyramidal neuron cell bodies in layer 2/3 (200 -400 µm from the dura) (ketamine: 23.7 ± 2.1%, saline: 9.4 ± 1.9%, relative to pre-injection, mean ± s.e.m.; P = 3 x 10 -8 , two-sample t-test; Fig. 1f, g). These somatic calcium transients have been shown to directly relate to the firing rate of cortical neurons 17, 18 , therefore the elevated calcium event rates reflect hyperactivity of pyramidal neurons, consistent with previous reports 12,19 . To characterize the effect of ketamine ...