Carnosine has been demonstrated to play an antitumorigenic role in certain types
of cancer. However, its underlying mechanism is unclear. In this study, the
roles of carnosine in cell proliferation and its underlying mechanism were
investigated in the cultured human cervical gland carcinoma cells HeLa and
cervical squamous carcinoma cells SiHa. The results showed that carnosine
exerted a significant inhibitory effect on the proliferation of HeLa cells,
whereas its inhibitory action on the proliferation of SiHa cells was much
weaker. Carnosine decreased the ATP content through inhibiting both
mitochondrial respiration and glycolysis pathways in cultured HeLa cells but not
SiHa cells. Carnosine reduced the activities of isocitrate dehydrogenase and
malate dehydrogenase in TCA (tricarboxylic acid) cycle and the activities of
mitochondrial electron transport chain complex I, II, III, and IV in HeLa cells
but not SiHa cells. Carnosine also decreased the mRNA and protein expression
levels of ClpP, which plays a key role in maintaining the mitochondrial function
in HeLa cells. In addition, carnosine induced G1 arrest by inhibiting the G1-S
phase transition in both HeLa and SiHa cells. Taken together, these findings
suggest that carnosine has a strong inhibitory action on the proliferation of
human cervical gland carcinoma cells rather than cervical squamous carcinoma
cells. Mitochondrial bioenergetics and glycolysis pathways and cell cycle may be
involved in the carnosine action on the cell proliferation in cultured human
cervical gland carcinoma cells HeLa.