Cystathionine β-synthase (CBS) catalyzes the condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. In addition to pyridoxal phosphate, human CBS has a heme cofactor with cysteine and histidine as ligands. While Fe(III)-CBS is inert to exogenous ligands, Fe(II)-CBS can be reversibly inhibited by carbon monoxide (CO) and reoxidized by O2 to yield superoxide radical. In this study, we have examined the kinetics of Fe(II)CO-CBS formation and reoxidation. Reduction of Fe(III)-CBS by dithionite showed square root dependence on concentration, indicating that the reductant species was the sulfur dioxide radical anion (SO2•−) that exists in rapid equilibrium with S2O42−. Formation of Fe(II)CO-CBS from Fe(II)-CBS and 1 mM CO occurred at (3.1 ± 0.4) × 10−3 s−1 (pH 7.4, 25 °C). The reaction of Fe(III)-CBS with the reduced form of the flavoprotein methionine synthase reductase in the presence of CO and NADPH resulted in its reduction and carbonylation to form Fe(II)CO-CBS. Fe(II)-CBS was formed as intermediate with a rate constant of (9.3 ± 2.5) × 102 M−1 s−1. Reoxidation of Fe(II)CO-CBS by O2 was multiphasic. The major phase showed hyperbolic dependence on O2 concentration. Although H2S is a product of the CBS reaction and a potential heme ligand, we did not find evidence for exogenous H2S effect on activity or heme binding. Reversible reduction of CBS by a physiologically relevant oxidoreductase is consistent with a regulatory role for the heme and could constitute a mechanism for crosstalk between the CO, H2S and superoxide signaling pathways.