A viable approach for building large-scale quantum computers is to interlink small-scale quantum computers with a quantum network to create a larger distributed quantum computer. When designing quantum algorithms for such a distributed quantum computer, one can make use of the added parallelization and distribution abilities inherent in such a system. An added difficulty to consider for distributed quantum computing is that a complex control system to orchestrate the various components is required. In this work, we present distributed and parallel versions of quantum algorithms and discuss potential benefits and we propose a general scheme for controlling the system. Further, we present the Interlin-q simulation platform which aims to simplify designing and simulating parallel and distributed quantum algorithms. Interlin-q's main features are generating and executing control instructions across a simulated quantum network of simulated quantum computers. We demonstrate a simulation of a proposed parallelized algorithm using Interlin-q and discuss steps for developing Interlin-q into a control system for distributed quantum computers.