A segmentação de imagens é uma operação importante em diversas aplicações de visão computacional e processamento de imagem, uma vez que representa o primeiro passo e o mais difícil em uma tarefa de análise de imagem. Um dos fatores que fazem a segmentação um desafio é a existência de objetos agrupados. Para lidar com esse problema, alguns tra balhos focam no desenvolvimento de métodos computacionais que visam a identificação precisa de marcadores na imagem, enquanto que outros se preocupam com o desenvolvi mento de técnicas voltadas à seleção de pontos côncavos no contorno de objetos agrupados, bem como, na identificação de pares de pontos correspondentes, os quais são fundamen tais para definir as subsequentes linhas de divisão. Nesse contexto, esta dissertação tem como objetivo discutir e comparar três propostas importantes da literatura que lidam com o cenário acima mencionado. Em geral, buscou-se avaliar comparativamente o de sempenho dos métodos computacionais propostos pelos trabalhos em estudo. E quando necessário, lacunas inconsistentes foram apontadas, a fim de possibilitar o aprimoramento e qualidade dos mesmos. Evidencia-se que as três propostas examinadas são fortemente dependentes dos parâmetros inseridos pelo usuário para ocorrer sucesso na segmentação final. Assim, existe a necessidade de um conhecimento a priori da imagem, fazendo com que o desempenho caia, especialmente quando se tem um conjunto de imagens que possui objetos ou de várias formas, e/ou extremamente agrupados e/ou com muitas concavida des. Sendo assim, as três propostas avaliadas possuem pontos vulneráveis ao segmentar objetos agrupados, seja por uma lacuna no algoritmo proposto, seja pela necessidade de se ter conhecimento a prior da imagem a ser segmentada, sendo necessário a inserção de parâmetros de forma manual. Logo, isso dificulta a escolha de um método ideal em uma situação prática real. Palavras-chave: Segmentação de imagens. Objetos agrupados. Divisão de agrupamen tos. Watershed. Análise de concavidade.