2019
DOI: 10.17981/ingecuc.15.1.2019.13
|View full text |Cite
|
Sign up to set email alerts
|

Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes

Abstract: Introducción: Las redes eléctricas tradicionales están migrando a nuevas configuraciones de redes inteligentes, que traen retos operacionales y de planeación. Con miras a avanzar en estos retos se propone resolver un problema de optimización usando programación en elementos de redes distribuidas inteligentes. Objetivo: El problema de optimización consiste en administrar el despacho energético de una red inteligente para optimizar los recursos disponibles, considerando la incertidumbre de energías renovab… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 11 publications
(10 citation statements)
references
References 14 publications
0
7
0
3
Order By: Relevance
“…The mutation rate, communication probability and local search probability of DEEPSO presented few significant improvements, therefore their values were taken by default respectively as 0.8, 0.8 and 0.1; in contrast, the criteria presented in Section 5 showed improved algorithm performance. In addition, we take advantage of the features of VNS, because no population size and mutation ratio are required [26,27]. Regarding computation time, there is a significant restriction of a maximum of 50,000 evaluations of the objective function.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The mutation rate, communication probability and local search probability of DEEPSO presented few significant improvements, therefore their values were taken by default respectively as 0.8, 0.8 and 0.1; in contrast, the criteria presented in Section 5 showed improved algorithm performance. In addition, we take advantage of the features of VNS, because no population size and mutation ratio are required [26,27]. Regarding computation time, there is a significant restriction of a maximum of 50,000 evaluations of the objective function.…”
Section: Resultsmentioning
confidence: 99%
“…Metaheuristics include a variety of strategies such as genetic algorithms, particle swarm, taboo search, swarm intelligence, scattered search, and trajectory re-chaining, among others [6,27]. In this study, the two techniques that produced the best results in the formulated problem were chosen.…”
Section: Optimization Using Vns-deepso Algorithmmentioning
confidence: 99%
“…Once the uncertainty costs (UCs) are estimated, UCs due to deviations in the energy dispatch of the MG are evaluated [8]. The solution strategy uses the variable neighbourhood searchdifferential evolutionary particle swarm optimization (VNS-DEEPSO) algorithm in two stages: the first one optimizes the economic benefits of the MG, and the second one optimizes the IMs [17]. This algorithm was selected due to its high performance in smart MG optimization problems [18].…”
Section: Introductionmentioning
confidence: 99%
“…La reducción de los efectos sobre el medioambiente es una necesidad impostergable, para enfrentar el cambio climático y el incremento acelerado del consumo energético para alcanzar un desarrollo sostenible [1], [2]. El acelerado desarrollo e innovación de las tecnologías de monitoreo representa una alternativa para reducir el consumo de energía [3], [4], [5].…”
Section: Introductionunclassified