2018
DOI: 10.20527/klik.v5i2.152
|View full text |Cite
|
Sign up to set email alerts
|

Implementasi Algoritma Backpropagation Untuk Memprediksi Kelulusan Mahasiswa

Abstract: <p><em>Student’s graduation is one kind of the college accreditation elements by BAN-PT. Because of that. Information System is one of the department in STMIK Banjarbaru, there is no application has been implemented to predict imprecisely of student’s graduation time so far, which causes on time graduation percentage tend low every year. Therefore the accurate student’s graduation prediction can help the committe to choose the correct decisions in order to prevent the imprecisely of student’s gradu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
7

Year Published

2019
2019
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(10 citation statements)
references
References 1 publication
0
3
0
7
Order By: Relevance
“…The Backpropagation algorithm is a supervised learning algorithm. The backpropagation algorithm uses a perceptron that has many layers to change the weights connected to the neurons in the hidden layer [11].The backpropagation algorithm is the development of the multilayer perceptron (MLP) algorithm [12]. Backpropagation is a simple and clear iterative algorithm that usually works well even with complex data [13].…”
Section: Backpropagationmentioning
confidence: 99%
“…The Backpropagation algorithm is a supervised learning algorithm. The backpropagation algorithm uses a perceptron that has many layers to change the weights connected to the neurons in the hidden layer [11].The backpropagation algorithm is the development of the multilayer perceptron (MLP) algorithm [12]. Backpropagation is a simple and clear iterative algorithm that usually works well even with complex data [13].…”
Section: Backpropagationmentioning
confidence: 99%
“…Bacpropogation pada riset terdahulu dipakai untuk mengenali jenis buku yang sangat banyak dipinjam oleh murid serta prediksi jumlah persediaan dan informasi pengelompokan jenis buku, hasilnya bisa menggambarkan rekemondasi tipe buku apa saja yang hendak direstock bersumber pada jenis buku. Hasil dari pengujian didapatkan tingkat error dari hasil data klasifikasi dan target, selanjutknya dalam uji regresi diketahui siqnifikasi hubungan klasifikasi, target, dan prediksi [9]. Penelitian lain yaitu tentang prediksi ketidaktepatan waktu lulus mahasiswa hal tersebut menyebabkan jumlah kelulusan tepat waktu lebih rendah tiap tahunnya.…”
Section: Pendahuluanunclassified
“…Hal ini memungkinkan neuron yang membentuk jaringan akan digunakan sebagai pemecahan masalah dari "program itu sendiri". (Yalidhan, 2018) e.…”
Section: Artificial Neural Networkunclassified