2022
DOI: 10.33650/coreai.v3i2.5074
|View full text |Cite
|
Sign up to set email alerts
|

Implementasi Algoritma C4.5 Untuk Memprediksi Kesesuaian Gaya Belajar Siswa Sekolah Dasar

Abstract: Data Mining adalah proses mengekstraksi dan menemukan pola dalam kumpulan data besar yang melibatkan metode dalam proses  pembelajaran mesin, statistik, dan sistem basis data. SD Negeri Sidodadi Paiton merupakan sekolah dasar yang terletak di desa Sidodadi kecamatan paiton. Pada proses pembelajaran di SD Negeri Sidodadi, masih banyak murid yang tidak fokus dan tidak memiliki kemauan untuk belajar, kemungkinan terbesar adalah ketidak cocokan gaya belajar dan metode belajar guru tersebut. Oleh karenanya, penulis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 7 publications
0
1
0
Order By: Relevance
“…Furthermore, Efrizoni et al ( 2022) compared feature extraction methods in multilabel text classification using machine learning algorithms, offering valuable insights into the application of machine learning in diverse classification tasks [42]. In contrast, the study by Sudriyanto et al (2022) implemented the C4.5 algorithm for predicting the suitability of elementary school students' learning styles [42], demonstrating the applicability of machine learning in educational contexts [43]. Moreover, Putra et al ( 2022) explored the impact of feature selection using Particle Swarm Optimization on sentiment analysis [45], providing insights into the optimization techniques that can be relevant for improving the accuracy of Quick Count predictions [45].…”
Section: Related Workmentioning
confidence: 99%
“…Furthermore, Efrizoni et al ( 2022) compared feature extraction methods in multilabel text classification using machine learning algorithms, offering valuable insights into the application of machine learning in diverse classification tasks [42]. In contrast, the study by Sudriyanto et al (2022) implemented the C4.5 algorithm for predicting the suitability of elementary school students' learning styles [42], demonstrating the applicability of machine learning in educational contexts [43]. Moreover, Putra et al ( 2022) explored the impact of feature selection using Particle Swarm Optimization on sentiment analysis [45], providing insights into the optimization techniques that can be relevant for improving the accuracy of Quick Count predictions [45].…”
Section: Related Workmentioning
confidence: 99%